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Abstract — In Part I of a two-part contribution, progress on understanding of poliutant formation from
liquid fuel combustion process is reviewed. The review concentrates on soot and nitrogen oxides emissions.
Future perspectives on the combustion and poilutant formation from alternative fuel sources, and air

pollution as a global issue are briefly discussed.

1. POLLUTANT EMISSIONS FROM LIQUID FUEL
UTILIZATION

1.1. Micro Gaseous Combustion Products

Combustion products appearing only in trace con-
centrations include nitrogen dioxide, NO,, sulfur diox-
ide, SO,, nitric oxide, NO, the unburnt or partially
reacted hydrocarbons including polycyclic aromatics,
and metallic compounds.

The nitrogen oxides are generally considered
together as NO,, and occur by either the high
temperature oxidation of atmospheric nitrogen {thermal
NO,), the oxidation of fuel-bound nitrogen compounds
(fuel NO,), or the fixation by hydrocarbons and subse-
quent oxidation of atmospheric nitrogen (prompt NO, ).
Among these the fuel-bound nitrogen is the main source
of nitrogen oxides emission from high nitrogen content
fuel combustion process. NO, emission and control pro-
blem has been an important subject of current research
efforts and is surveyed in a separate section.

Sulfur dioxide does not appear to be a major pollu-
tant from vehicles as the fuels are desulfurized at
refineries in most countries, but it does result from com-
bustion of the heavier high-sulfur residual fuels and
coal. SO, has an acrid odor and leads to acidic corro-
sion. It is also known to be the main cause of acid rain
[NRC(19834a)]. Installation of SO, scrubbing facilities at
coal fired power plants is a common practice. The
technology of SO, scrubbing is well established
[Singer(1981)], however, it cannot be always justified to
be economical and has the problem of finding waste

disposal sites.

Unburnt or partially reacted hydrocarbons are pro-
duced by imperfect mixing of fuel and air by quenching
of partially reacted fuel within the combustion chamber.
Although the original reasons for concerns with
these emissions have been the efficiency and clean
operation of the combustion process, recent interest has
been motivated by the concern with health effects of
soot and polycyclic aromatic hydrocarbons, the latter of
which may be a precursor to the former species
[Bittner(1981), Haynes and Wagner(1981), NIEHS(1982),
Longwell(1983)].

1.2. Carbonaceous Particulates

On the assumption that any air-borne dust is either
consumed in the flame or filtered out beforehand, the
main particulates present in combustion products are
likely to be carbonaceous, which may either deposit on
the walls of the combustion chamber or discharge as
smoke. Carbonaceous particulates from liquid fuel com-
bustion process can be classified into two kinds; soot
which is believed to form from the gas phase reaction of
fuel, and coke which is believed to form from the liquid
phase reaction of fuel.

Soot formation is indicated by a yellow luminosity,
and is clearly more likely in diffusion than in premixed
flames. In non-sooting flames soot becomes oxidized
completely in later stages of combustion. Luminous
non-sooting flames are required for heat transfer, and
non-luminous non-sooting flame for work transfer. Fur-
ther discussions on the soot formation in conjunction
with liquid fuel combustion process are developed later
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in this review.
2. NO, EMISSIONS

Seven oxides of nitrogen are known to occur: NO,
NO,, NO,, N,0, N,0, N,0, and N,O,. Of these,
NO(nitric oxide) and NO(nitrogen dioxide) are emitted
in sufficient quantities from fuel combustion processes
to be significant in atmospheric pollution. In this paper,
“NO." refers to either or both of these two oxides of
nitrogen. NO, is deterious to human respiratory func-
tion and is a key participant in the formation of
photochemical smog. NO, taken alone, is relatively less
harmful but is important as the main precursor to NQ,
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2.1. Thermal NO

The kinetics of the extended Zeldovich mechanism
[Zeldovich{1946)}

O+N,=NO+N 0
N+0,=NO+0 )
N+ OH=NO +H 3)

has been studied widely and well reviewed [Bowman
and Seery(1972), Bowman (1975)].

Reaction (1) is much slower than reactions (2) and
(3). Therefore, it determines the rate of NO formation.
The creation of an NO molecule from reaction (1} is ac-
complished by the release of an N atom, which rapidly
forms another NO molecule from reactions (2) and (3).
Reactions (1) and (3) are the chain-breaking and chain-
making mechanisms, and the oxygen atom is the chain
carrier. This mode of NO formation is basically a fuel-
lean, high temperature phenomenon that has been
relatively amenable to control techniques.

2.2. Prompt NO

The existence of non-Zeldovich pathway to the fixa-
tion of molecular nitrogen was first proposed by
Fenimore(1971), and the NO generated in this fashion
was called prompt NO. The prompt NO mechanism is
believed to be initiated by hydrocarbon radicals attack-
ing molecular nitrogen.

The nature of the hydrocarbon-nitrogen interaction
is not yet definitely known, although the reaction

CH + N, = HCN + N )

seems like a candidate {Fenimore(1971)]. Other reac-
tions that have been considered include [Blauwens, et
al, 1977)):

CH, + N, = HCN + NH )
C,+ N, = 2CN (6)

It appears that prompt NO may occur in the flame zone
by both the Zeldovich mechanism on the fuel-lean side
of the flame and the CH-radical mechanism on the fuel-
rich side of the flame [Blauwens, et al. (1977), Hayhurst
and Vince{1980)].

2.3. Fuel NO'

Fuel NO is derived from bound nitrogen introduced
with the fuel. This mode of NO formation, which has
proved difficult to control with existing techniques
{Beér, et al. (1981, 1983)], predominates when the
nitrogen content of the fuel exceeds a few tenth of a per
cent, a condition very likely to occur in alternative fuels
like coal-derived fuels or shale oils [Byrnes(1980)].

In the fuel-lean and stoichiometric flames, the con-
version of fuel nitrogen to NO (and perhaps NO,) is
practically complete and occurs on a time scale com-
parable to that of the combustion itself [Levy, et al.

(1978)). In fuel-rich flames, fuel-bound nitrogen converts
rapidly to HCN, which then subsequently converts to
other nitrogen-bearing intermediates and products
[Fenimore(1976), Haynes(1977)]. A schematic of the
mechanistic pathways of fuel nitrogen conversion and
its interaction with thermal NO is represented in Figure
2.
2.4. NO Formation from Burning Droplets

A few studies have considered NO production
around individual quiescent droplets [Altenkirch, et al
(1972), Kestin(1972), Bracco(1973)]. The NO production
mechanism for the thermal NO is superimposed on the
basic droplet burning structure. The results suggest that
the envelope flame surrounding the droplet could be a
significant source of NO. Hart, et al.(1975) studied the
formation of NO and NO, in the forward stagnation
region of flames surrounding burning fuel cylinders
simulating the droplet combustion. They found that the
maximum yields of NO and NO  were situated towards
the lean side of the maximum flame temperature. And
also it has been shown that considerable NO is formed
near the liquid surface by a prompt NO mechanism.

Hanson, et af. {1983) performed experiments on 150
um droplet array of fuel oils revealed non-equilibrium
evolution of nitrogeneous components. They have
shown that the interplay between the volatility and
mass transfer effects is directly responsible for the ac-
celeration of the evolution of fuel-nitrogen, and because
of these effects heavy petroleum fuels lend themselves
favorably to application of staged combustion for the
control of fuel NO, emission.
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Fig. 2. Pathways of fuel nitrogen conversion.
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Recently, Rah (1984) has shown from experimental
studies on combustion of fuel oil droplet arrays that the
overall equivalence ratio is important for the fuel-NO
emission as long as there is an envelope flame around
the droplets.

2.5. NO, Emission Control

Beacuse of more stringent regulation of NO, emis-
sions from combustion sources, combustor designs have
been modified to reduce oxide formation through con-
trol of flame temperature—staged combustion, reduced
excess air percentage, use of overfire air, tangential fir-
ing, and gas recirculation [Sarofim and Flagan(1976),
Singer(1981)]. Although these steps have been effective,
and have been found adequate in many countries, any
further reduction in allowable NO, may require some
form of post-combustor gas treatment. Many flue-gas
treatment systems are in operation, principally in Japan
[Rosenberg, et al.(1980). Singer(1981)].

By far the most attractive NO, control strategy in-
volves modification of the combustion process by
employing staged combustion technique. In this techni-
que the major proportion of the fuel-bound nitrogen is
converted in fuel-rich zone to relatively inactive
motlecular nitrogen. Complete combustion of the fuel is
accomplished in a subsequent fuel-lean zone in which
carefully controlled conditions minimize the formation
of thermal NO. Studies at Massachusetts Institute of
Technology 3 MW Combustion Research Facility [Beér,
& ol (1981, 1983)} have demonstrated the potential ap-
plicability of the staged combustion technique. A sum-
mary of general stationary source NO, control technique
is given on Table 1 {EPA(1978)].

3. SOOT FORMATION

The combustion of fuels with insufficient air pro-
duces a black smoke containing extremely small carbon
particles which, when separated from combustion gases,
comprise a fluffy powder of intense blackness. The term
soot or carbon biack refers to a wide range of such pro-
ducts made by partial combustion or thermal decom-
position of hydrocarbons in the vapor phase, in contrast
to cokes and chars which are formed by the pyrolysis of
solids (or liquids).

The physical and chemical properties of soot and the
process of soot formation have been studied intensively
for the various following reasons:

(it soot emission reflects poor combustion conditions
and a loss of efficiency:

(i) soot pollutes the environment;

(iii) soot in a flame causes it to be highly luminous, an
effect which is widely used as an important heat
transfer mechanism in many furnaces;

(v} soot is widely employed in many branches of
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technology, (e.g. as a pigment or reinforcing agent

for rubber products, particularly tires) and is pro-

duced in vast quantities.
There are a number of comprehensive reviews on soot
formation [Palmer and Cullis(1965), Lahaye and
Prado(1978), Bittner and Howard(1978), Wagner(1979),
Faynes and Wagner(1981), Smith(1981)]. The physical
and chemical properties of soot and the methods of
manufacturing carbon black have been treated by
Schubert, et al{1967) and Dannenberg(1978). Flame
radiation involving soot particles is treated in several
reviews and monographs [Hottel and Sarofim(1967),
Beér(1974), Siegel and Howell(1981), Tien and
Lee(1982)].
3.1. Fundamentals of Soot Formarion

Soot is not a uniquely defined substance. It looks
black and consists mainly of carbon, but it is quite dif-
ferent from graphite (Table 2). in addition to chemically
combined surface oxygen, soot contains varying
amounts of moisture, solvent-extractable hvdrocarbons
which are mostly condensed hydrogen, and inorganic
salts. Extractable hydrocarbons result from the adsorp-
tion of small amount of incompletely burned hydrocar-
bons. The combined sulfur and inorganic salt contents
have their origin in the feedstocks.

The basic units of soot are spherical or nearly
spherical particles with diamenters often in the range of
20-30 nm. These “elementary particles” aggregate
together to produce straight or branched chains, which
form the fluffy soot flocculates, sometimes visible in the
atmosphere. [t was pointed out by Palmer and
Cullis(1965) that soot particles do not differ rnuch in size
whether derived from a furnace flame, a piston engine,
a gas turbine or a premixed flame.

From a thermodynamic point of view
[Wagner(1979)] soot emission should begin at a C/O
ratio exceeding unity, corresponding to the condition m
<2y, in

CoHoty0,=2yCO~7H, + (m-2y)C.

Experimentally determined limits of soot formation do
not occur at C/O = 1 but close to C/O = 0.5 [Street and
Thomas(1955), Wright(1969)]. This reveals that the car-
bon formation is not an equilibrium process.

The amount of soot generated is a function of both
fuel composition and local environment in the com-
bustor. Emission of soot increases with increasing C/H
ratio and arornaticity of the fuel in the following order
(in general):

paraffins, olefins, naphthenes, aromatics, polycyclic
aromatics.

Since the C/O ratio will always exceed 0.5 in some
region of a diffusion flame, clearly soot will always be
emitted from that region. Whether or not soot will be
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Table 2. Forms of carbon and characteristics.

Crystal System Specific C-C layer

Form Gravity distance, distance,
nm nm
diamond cubical 3.52 0. 155
graphite hexagonal 2.27 0.142 0.335
carbon black hexagonal

turbostatic* 1.86-2.04 0.142 0.365

cokes

{oven and calcined) 1.3-2.1
chars and

activated carbons 1.1-1.3
fibrous carbons ” 1.65
viterous carbon ” 1.47
pyrolytic ” 1L.2-2.2
graphite e

Source:Dannenberg (1978)

* Turbostatic crystals have randomly oriented planes.

observed as a final combustion product depends on the
rate of destruction in the flame region of C/O<0.5. Soot
oxidation in this region is favored by low emissicns
from the region of formation and growth, small particle
diameter, large concentrations of the predominant
species, and high temperatures.

Useful studies of soot formation fundamentals have
been performed in relatively simple environments.
Studies in premixed flames [Street and Thomas(1955),
McFarlane, et al(1964), Bonne, et al(1965), Homann
and Wagner{1967), Homann(1968), Wesborg, et
al(1973, 1975), Haynes, et al(1980), Bittner and
Howard(1981)], diffusion flames [Clarke, et al{1946),
Schalla and McDonald(1955), Chakraborty and
Long(1968), Tesner, et al(1971), Schug, et al(1980),
Glassman and Yaccarino(1980, 1981), Haynes and
Wagner(1980), Nishida and Mukohara(1982)], and well-
stirred reactors [Wright(1969), Blazowski, ef al.{1978),
Blazowski(1980)] have produced useful results. Ex-
periments in such unsteady devices as shock tubes
[Graham(1977), Wang, e/ al (1981)] and constant volume
bombs [Flower and Dyer(1980)] have also resulted in
significant contributions.

The fundamental mechanism and kinetics of soot
formation in flames have been of interest to combustion
researchers for many years as represented by the large
volume of literature on this subject [Haynes{1981)]. The
mechanism by which soot is now believed to be formed
from the vapor phase in flames is depicted schematically
in Figure 3. Concurrent with the formation processes,
the destructive process will also occur in flame regions
where oxidizing species are present. Despite several
suggested models on soot formation process in the light
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Fig.3. The mechanism of soot particulate forma-

tion in combustion system.

of kinetics [Tesner(1959), Khan and Greeves(1974), Jen-
son(1974), Edelman, et al(1979), Wang, et al(1981)] the
comprehensive understanding and modeling of soot for-
mation seem to be far from completion at present. Re-
cent advances in modeling of soot formation are review-
ed by Palmer and Cuilis(1978), and Haynes(1981}.
3.2. Soot Formation in Dropiet Burning

As in a gaseous diffusion flame, formation of soot in
burning droplet flame is determined by the local fuel
and oxidizer concentrations. Good mixing of the fuel-
vapor with air is therefore one of the necessary condi-
tions to limit soot formation. However, in the burning of
droplets, evaporation of the fuel by heat transfer plays a
role. As the fuel spray approaches the flame, the smaller
droplets may have time to evaporate completely before
burning, while the larger ones may conceivably burn in
an “envelope flame” mode. At low relative velocities
between the droplet and the surrounding oxidizer, the
droplet is completely surrounded by the envelope flame.
While above a critical velocity, the envelope flame is
established downstream of the droplet [Sjogre(1973),
Gollahalli and Brzustowski(1973)]. The amount of soot
in these two types of flames differ markedly. The total
amount of soot present in the wake flame as a whole is
less than 10% of that in the envelope flame [Gollahalli
and Brzustowski(1973)).

Recently, Rah, el al (1982), in a study on the combus-
tion of fuel droplet array, found that the soot formation
is strongly dependent upon the formation of an
envelope flame about the droplets, increasing
dramatically as the oxygen concentration was increased
beyond the point of ignition. They pointed out the im-
portance of ignition phenomena in relation to the forma-
tion of soot in liquid fuel combustion. It was shown that
the suppression of soot formation could be achieved by
choosing conditions that lead to the extinction of the
envelope flame.
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3.3. Staged Combustion and Soot Formation

As was discussed earlier in this review, the staged
combustion technique is the most promising strategy for
NO, emission control. However, Beér, et al(1983)
pointed out that there is concern over soot emission
from staged combustion of fuels of highly aromatic and
high C/H ratio contents. The operating conditions in the
fuel-rich first stage result in the formation of a significant
amount of soot. Complete burn-out of this soot must be
achieved in the fuel-lean second stage by ensuring good
mixing and sufficient residence time at elevated
temperatures.

Suppression of ignition or extinction of the envelope
flame about the droplet may result in lower level of soot
formation in the first stage. However, the premixed
flame nature of the subsequent stage may provide better
conditions for NO, formation. There is a definite trade-
off between NO, control and soot formation in the stag-
ed combustion technique [Blazowski, et al(1981)].

Rah(1984) has shown that the control of the emis-
sion of both soot and nitrogen oxides can be achieved by
use of low oxygen concentration in the oxidation gas to
delay ignition and suppress soot formation by using a
high fuel/air ratio to reduce NO .

4. PERSPECTIVES

The above discussions on the combustion of liquid
fuels only treated the use of conventional petroleum-
based fuel oils. Recent increased interest on slurries of
coals with either oil or water brings about the necessasi-
ty of research on fundamental aspects of coal-slurry
utilization. Physical property estimation, rheology of
highly loaded suspensions, phase stability, atomization
of slurry, ignition and combustion of coal-sturry, ash for-
mation and deposition, and economics of coal-slurry
process are several examples of disciplines related to the
coal-slurry technology [ICE(1983)].

The discussions on the combustion-generated air
pollutants were limited to the formation of soot and
NO,. And the control strategies were more or less on the
local levels. There are growing concerns over the issues
of acid rain due to increased levels of SO, and NO, con-
centrations in the atmosphere [NRC(1983a)] and of the
greenhouse warming of the atmosphere caused by an
increase of CO, concentration in the atmosphere
[NRC(1983b)]. Both the issues are of global concerns and
should be considered very seriously for the generations
to come. For the case of the acid rain, they agree on its
devastating impacts on the environment and ecological
systems, however, there are different opinions either
passimistic or optimistic on the impact of increased CO,
concentration in the atmosphere {[Idso(1983)]. The

whole situation provides a challenging opportunity of
enhanced degrees of cooperations between experts on
various subjects to find solutions to a probjem facing the
humankind on the earth, air pollution.
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